NaCl Affects Microtubule Persistence Length
نویسندگان
چکیده
منابع مشابه
Persistence length measurements from stochastic single-microtubule trajectories.
We present a simple method to determine the persistence length of short submicrometer microtubule ends from their stochastic trajectories on kinesin-coated surfaces. The tangent angle of a microtubule trajectory is similar to a random walk, which is solely determined by the stiffness of the leading tip and the velocity of the microtubule. We demonstrate that even a single-microtubule trajectory...
متن کاملMicrotubule curvatures under perpendicular electric forces reveal a low persistence length.
The mechanics of microtubules, cylindrical protein filaments that constitute the cytoskeleton, have been well characterized on long length scales. Here, we investigate the persistence length of short (approximately 0.1 microm) ends of microtubules by measuring the trajectories of kinesin-propelled microtubules under perpendicular electric forces. We relate the measured trajectory curvatures to ...
متن کاملExpression of Nucleolin Affects Microtubule Dynamics
Nucleolin is present in diverse cellular compartments and is involved in a variety of cellular processes from nucleolar structure and function to intracellular trafficking, cell adhesion and migration. Recently, nucleolin has been localized at the mature centriole where it is involved in microtubule nucleation and anchoring. Although this new function of nucleolin linked to microtubule regulati...
متن کاملCell-Length-Dependent Microtubule Accumulation during Polarization
BACKGROUND Breaking cell symmetry, known as polarization, requires dynamic reorganization of microtubules (MTs) and is essential to many cellular processes, including axon formation in neurons. A critical step in polarization is believed to be the "selective stabilization" of MTs, which hypothesizes a spatial and/or temporal shift toward net MT assembly in a preferred direction of growth. RES...
متن کاملMicrotubule length regulation by molecular motors.
Length regulation of microtubules (MTs) is essential for many cellular processes. Molecular motors like kinesin-8, which move along MTs and also act as depolymerases, are known as key players in MT dynamics. However, the regulatory mechanisms of length control remain elusive. Here, we investigate a stochastic model accounting for the interplay between polymerization kinetics and motor-induced d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2018
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2017.11.2755